منابع مشابه
Robust Bayesian Tensor Factorization for Incomplete Multiway Data
We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CP-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The lowCP-rank tensor is ...
متن کاملSemi-Supervised Clustering via Matrix Factorization
The recent years have witnessed a surge of interests of semi-supervised clustering methods, which aim to cluster the data set under the guidance of some supervisory information. Usually those supervisory information takes the form of pairwise constraints that indicate the similarity/dissimilarity between the two points. In this paper, we propose a novel matrix factorization based approach for s...
متن کاملTopic supervised non-negative matrix factorization
Topic models have been extensively used to organize and interpret the contents of large, unstructured corpora of text documents. Although topic models often perform well on traditional training vs. test set evaluations, it is often the case that the results of a topic model do not align with human interpretation. This interpretability fallacy is largely due to the unsupervised nature of topic m...
متن کاملSupervised Matrix Factorization for Cross-Modality Hashing
Matrix factorization has been recently utilized for the task of multi-modal hashing for cross-modality visual search, where basis functions are learned to map data from different modalities to the same Hamming embedding. In this paper, we propose a novel cross-modality hashing algorithm termed Supervised Matrix Factorization Hashing (SMFH) which tackles the multi-modal hashing problem with a co...
متن کاملDistributed Flexible Nonlinear Tensor Factorization for Large Scale Multiway Data Analysis
Tensor factorization is an important approach to multiway data analysis. However, real-world tensor data often encompass complex interactions among tensor elements, and are extremely sparse and of huge size. Despite the success of exiting approaches, they are either not powerful enough to model the complex interactions or extreme sparsity in data. To overcome these limits, we propose a new tens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2018
ISSN: 1935-7524
DOI: 10.1214/18-ejs1421